Calculate the differences between the empirical attainment functions of two data sets.
Usage
eafdiff(x, y, intervals = NULL, maximise = c(FALSE, FALSE), rectangles = FALSE)
Arguments
- x, y
Data frames corresponding to the input data of left and right sides, respectively. Each data frame has at least three columns, the third one being the set of each point. See also
read_datasets()
.- intervals
(
integer(1)
)
The absolute range of the differences \([0, 1]\) is partitioned into the number of intervals provided.- maximise
(
logical()
|logical(1)
)
Whether the objectives must be maximised instead of minimised. Either a single logical value that applies to all objectives or a vector of logical values, with one value per objective.- rectangles
If TRUE, the output is in the form of rectangles of the same color.
Value
With rectangle=FALSE
, a data.frame
containing points where there
is a transition in the value of the EAF differences. With
rectangle=TRUE
, a matrix
where the first 4 columns give the
coordinates of two corners of each rectangle and the last column. In both
cases, the last column gives the difference in terms of sets in x
minus
sets in y
that attain each point (i.e., negative values are differences
in favour y
).
Examples
A1 <- read_datasets(text='
3 2
2 3
2.5 1
1 2
1 2
')
A2 <- read_datasets(text='
4 2.5
3 3
2.5 3.5
3 3
2.5 3.5
2 1
')
d <- eafdiff(A1, A2)
str(d)
#> num [1:9, 1:3] 1 2 2.5 2 2 3 2.5 3 4 2 ...
print(d)
#> [,1] [,2] [,3]
#> [1,] 1.0 2.0 2
#> [2,] 2.0 1.0 -1
#> [3,] 2.5 1.0 0
#> [4,] 2.0 2.0 1
#> [5,] 2.0 3.0 2
#> [6,] 3.0 2.0 2
#> [7,] 2.5 3.5 0
#> [8,] 3.0 3.0 0
#> [9,] 4.0 2.5 1
d <- eafdiff(A1, A2, rectangles = TRUE)
str(d)
#> num [1:9, 1:5] 2 1 2.5 2 2 2 3 3 4 1 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr [1:5] "xmin" "ymin" "xmax" "ymax" ...
print(d)
#> xmin ymin xmax ymax diff
#> [1,] 2.0 1.0 2.5 2.0 -1
#> [2,] 1.0 2.0 2.0 Inf 2
#> [3,] 2.5 1.0 Inf 2.0 0
#> [4,] 2.0 2.0 3.0 3.0 1
#> [5,] 2.0 3.5 2.5 Inf 2
#> [6,] 2.0 3.0 3.0 3.5 2
#> [7,] 3.0 2.5 4.0 3.0 2
#> [8,] 3.0 2.0 Inf 2.5 2
#> [9,] 4.0 2.5 Inf 3.0 1