Computes the hypervolume metric with respect to a given reference point assuming minimization of all objectives.
Arguments
- data
(
matrix
|data.frame
)
Matrix or data frame of numerical values, where each row gives the coordinates of a point.- reference
(
numeric()
)
Reference point as a vector of numerical values.- maximise
(
logical()
|logical(1)
)
Whether the objectives must be maximised instead of minimised. Either a single logical value that applies to all objectives or a vector of logical values, with one value per objective.
Details
The algorithm has \(O(n^{d-2} \log n)\) time and linear space complexity in the worst-case, but experimental results show that the pruning techniques used may reduce the time complexity even further.
References
Carlos M. Fonseca, Luís Paquete, Manuel López-Ibáñez (2006). “An improved dimension-sweep algorithm for the hypervolume indicator.” In Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), 1157–1163. IEEE Press, Piscataway, NJ. doi:10.1109/CEC.2006.1688440 .
Nicola Beume, Carlos M. Fonseca, Manuel López-Ibáñez, Luís Paquete, Jan Vahrenhold (2009). “On the complexity of computing the hypervolume indicator.” IEEE Transactions on Evolutionary Computation, 13(5), 1075–1082. doi:10.1109/TEVC.2009.2015575 .